Pythonãããžãã¹ã€ã³ããªãžã§ã³ã¹ïŒBIïŒã«æŽ»çšããããã®å æ¬çãªã¬ã€ããããŒã¿ãŠã§ã¢ããŠã¹ã®ETLããã»ã¹ãããŒã«ãã°ããŒãã«ããŒã¿ç®¡çã®ããã®ãã¹ããã©ã¯ãã£ã¹ã«çŠç¹ãåœãŠãŸãã
Pythonã«ããããžãã¹ã€ã³ããªãžã§ã³ã¹: ETLã§ããŒã¿ãŠã§ã¢ããŠã¹ãæ§ç¯ãã
仿¥ã®ããŒã¿é§ååäžçã«ãããŠãããžãã¹ã€ã³ããªãžã§ã³ã¹ïŒBIïŒã¯ãçµç¹ãæ å ±ã«åºã¥ããæææ±ºå®ãè¡ãäžã§æ¥µããŠéèŠãªåœ¹å²ãæãããŠããŸããããããBIæŠç¥ã®æ žãšãªãèŠçŽ ã¯ãæ§ã ãªãœãŒã¹ããããŒã¿ãä¿åãåæããããã®äžå çãªãªããžããªã§ããããŒã¿ãŠã§ã¢ããŠã¹ã§ããããŒã¿ãŠã§ã¢ããŠã¹ã®æ§ç¯ãšç¶æã«ã¯ãå€ãã®å Žåè€éã§å ç¢ãªããŒã«ãå¿ èŠãšããETLããã»ã¹ïŒæœåºã倿ãããŒãïŒã䌎ããŸãããã®å æ¬çãªã¬ã€ãã§ã¯ãETLããã»ã¹ã«çŠç¹ãåœãŠãPythonãããŒã¿ãŠã§ã¢ããŠã¹ã®æ§ç¯ã«ã©ã®ããã«å¹æçã«äœ¿çšã§ããããæ¢ããŸããã°ããŒãã«ãªããŒã¿ç®¡çã®ããã®æ§ã ãªã©ã€ãã©ãªããã¬ãŒã ã¯ãŒã¯ãããã³ãã¹ããã©ã¯ãã£ã¹ã«ã€ããŠè°è«ããŸãã
ããŒã¿ãŠã§ã¢ããŠã¹ãšã¯äœãããããŠãªãéèŠãªã®ãïŒ
ããŒã¿ãŠã§ã¢ããŠã¹ïŒDWïŒã¯ã1ã€ãŸãã¯è€æ°ã®ç°ãªããœãŒã¹ããã®çµ±åãããããŒã¿ã®äžå€®ãªããžããªã§ãããã©ã³ã¶ã¯ã·ã§ã³åŠççšã«èšèšãããéçšããŒã¿ããŒã¹ãšã¯ç°ãªããDWã¯åæã¯ãšãªçšã«æé©åãããŠãããããžãã¹ãŠãŒã¶ãŒãå±¥æŽããŒã¿ããæŽå¯ãåŸãããšãå¯èœã«ããŸããããŒã¿ãŠã§ã¢ããŠã¹ã䜿çšããäž»ãªå©ç¹ã¯ä»¥äžã®ãšããã§ãã
- æææ±ºå®ã®æ¹å: ããžãã¹ããŒã¿ã«å¯Ÿããåäžã®ä¿¡é Œã§ããæ å ±æºãæäŸããããæ£ç¢ºã§ä¿¡é Œæ§ã®é«ãæŽå¯ã«ã€ãªãããŸãã
- ããŒã¿å質ã®åäž: ETLããã»ã¹ã¯ããŒã¿ãã¯ãªãŒã³ã¢ããããã³å€æããäžè²«æ§ãšæ£ç¢ºæ§ãä¿èšŒããŸãã
- ã¯ãšãªããã©ãŒãã³ã¹ã®é«éå: åæã¯ãšãªçšã«æé©åãããŠãããã¬ããŒãçæãšåæãé«éåããŸãã
- å±¥æŽåæ: å±¥æŽããŒã¿ãä¿åãããã¬ã³ãåæãšäºæž¬ãå¯èœã«ããŸãã
- ããžãã¹ã€ã³ããªãžã§ã³ã¹: BIããŒã«ãšããã·ã¥ããŒãã®åºç€ãšãªããããŒã¿é§ååã®æææ±ºå®ãä¿é²ããŸãã
ããŒã¿ãŠã§ã¢ããŠã¹ã¯ãå€åœç±äŒæ¥ããäžå°äŒæ¥ïŒSMEïŒãŸã§ãããããèŠæš¡ã®äŒæ¥ã«ãšã£ãŠäžå¯æ¬ ã§ããäŸãã°ãAmazonã®ãããªã°ããŒãã«ãªEã³ããŒã¹äŒæ¥ã¯ãããŒã¿ãŠã§ã¢ããŠã¹ã䜿çšããŠé¡§å®¢è¡åãåæããäŸ¡æ ŒæŠç¥ãæé©åããç°ãªãå°åã§ã®åšåº«ã管çããŠããŸããåæ§ã«ãå€åœç±éè¡ã¯ããŒã¿ãŠã§ã¢ããŠã¹ã䜿çšããŠã財åããã©ãŒãã³ã¹ãç£èŠããè©æ¬ºãæ€åºããæ§ã ãªç®¡èœåºåã§ã®èŠå¶èŠä»¶ãéµå®ããŠããŸãã
ETLããã»ã¹: æœåºã倿ãããŒã
ETLããã»ã¹ã¯ãããããããŒã¿ãŠã§ã¢ããŠã¹ã®åºç€ã§ãããœãŒã¹ã·ã¹ãã ããããŒã¿ãæœåºããäžè²«æ§ã®ãã圢åŒã«å€æããããŒã¿ãŠã§ã¢ããŠã¹ã«ããŒãããäžé£ã®äœæ¥ãå«ãŸããŸããåã¹ãããã詳ããèŠãŠãããŸãããã
1. æœåºïŒExtractïŒ
æœåºãã§ãŒãºã§ã¯ãæ§ã ãªãœãŒã¹ã·ã¹ãã ããããŒã¿ãååŸããŸãããããã®ãœãŒã¹ã«ã¯ä»¥äžãå«ãŸããŸãã
- ãªã¬ãŒã·ã§ãã«ããŒã¿ããŒã¹: MySQL, PostgreSQL, Oracle, SQL Server
- NoSQLããŒã¿ããŒã¹: MongoDB, Cassandra, Redis
- ãã©ãããã¡ã€ã«: CSV, TXT, JSON, XML
- API: REST, SOAP
- ã¯ã©ãŠãã¹ãã¬ãŒãž: Amazon S3, Google Cloud Storage, Azure Blob Storage
äŸ: æ§ã ãªå°ççå°åã«ãŸãããç°ãªãããŒã¿ããŒã¹ã«è²©å£²ããŒã¿ãä¿åãããŠããå€åœç±å°å£²äŒæ¥ãæ³åããŠã¿ãŠãã ãããæœåºããã»ã¹ã§ã¯ãåããŒã¿ããŒã¹ïŒäŸãã°ãåç±³åãMySQLããšãŒãããåãPostgreSQLãã¢ãžã¢åãOracleïŒã«æ¥ç¶ããé¢é£ãã販売ããŒã¿ãååŸããŸããå¥ã®äŸãšããŠãAPIã䜿çšããŠãœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ãã顧客ã¬ãã¥ãŒãæœåºããããšãèããããŸãã
Pythonã¯ãæ§ã ãªãœãŒã¹ããããŒã¿ãæœåºããããã®ããã€ãã®ã©ã€ãã©ãªãæäŸããŠããŸãã
psycopg2: PostgreSQLããŒã¿ããŒã¹ã«æ¥ç¶ãããããmysql.connector: MySQLããŒã¿ããŒã¹ã«æ¥ç¶ãããããpymongo: MongoDBããŒã¿ããŒã¹ã«æ¥ç¶ãããããpandas: CSVãExcelããã®ä»ã®ãã¡ã€ã«åœ¢åŒããããŒã¿ãèªã¿èŸŒããããrequests: APIã³ãŒã«ãè¡ããããscrapy: ãŠã§ãã¹ã¯ã¬ã€ãã³ã°ããã³ãŠã§ããµã€ãããã®ããŒã¿æœåºã®ããã
ã³ãŒãäŸïŒPandasã䜿çšããCSVãã¡ã€ã«ããã®ããŒã¿æœåºïŒ:
import pandas as pd
# Read data from CSV file
df = pd.read_csv('sales_data.csv')
# Print the first 5 rows
print(df.head())
ã³ãŒãäŸïŒRequestsã䜿çšããREST APIããã®ããŒã¿æœåºïŒ:
import requests
import json
# API endpoint
url = 'https://api.example.com/sales'
# Make the API request
response = requests.get(url)
# Check the status code
if response.status_code == 200:
# Parse the JSON response
data = json.loads(response.text)
print(data)
else:
print(f'Error: {response.status_code}')
2. 倿ïŒTransformïŒ
倿ãã§ãŒãºã§ã¯ãæœåºãããããŒã¿ã®äžè²«æ§ãšå質ã確ä¿ããããã«ãããŒã¿ã®ã¯ã¬ã³ãžã³ã°ã倿ãçµ±åãè¡ããŸããããã«ã¯ä»¥äžãå«ãŸããŸãã
- ããŒã¿ã¯ã¬ã³ãžã³ã°: éè€ã®åé€ãæ¬ æå€ã®åŠçããšã©ãŒã®ä¿®æ£ã
- ããŒã¿å€æ: ããŒã¿åã®å€æã圢åŒã®æšæºåãããŒã¿ã®éèšã
- ããŒã¿çµ±å: ç°ãªããœãŒã¹ããã®ããŒã¿ãçµ±äžãããã¹ããŒãã«ããŒãžã
- ããŒã¿ãšã³ãªããã¡ã³ã: ããŒã¿ã«ä»å æ å ±ïŒäŸ: äœæã®ãžãªã³ãŒãã£ã³ã°ïŒã远å ã
äŸ: å°å£²äŒæ¥ã®äŸãç¶ãããšã倿ããã»ã¹ã«ã¯ãé貚å€ãå ±éã®é貚ïŒäŸ: USDïŒã«å€æããããšãç°ãªãå°åéã§æ¥ä»åœ¢åŒãæšæºåããããšã補åã«ããŽãªããšã®ç·å£²äžãèšç®ããããšãªã©ãå«ãŸããå ŽåããããŸããããã«ãæ§ã ãªã°ããŒãã«ããŒã¿ã»ããããã®é¡§å®¢äœæã¯ãç°ãªãéµäŸ¿åœ¢åŒã«æºæ ããããã«æšæºåãå¿ èŠãšãªãå ŽåããããŸãã
Pythonã¯ãããŒã¿å€æã®ããã®åŒ·åãªã©ã€ãã©ãªãæäŸããŠããŸãã
pandas: ããŒã¿æäœãšã¯ã¬ã³ãžã³ã°ã®ãããnumpy: æ°å€æŒç®ãšããŒã¿åæã®ãããscikit-learn: æ©æ¢°åŠç¿ãšããŒã¿ååŠçã®ããã- ã«ã¹ã¿ã 颿°: ç¹å®ã®å€æããžãã¯ãå®è£ ããããã
ã³ãŒãäŸïŒPandasã䜿çšããããŒã¿ã¯ã¬ã³ãžã³ã°ãšå€æïŒ:
import pandas as pd
# Sample data
data = {
'CustomerID': [1, 2, 3, 4, 5],
'ProductName': ['Product A', 'Product B', 'Product A', 'Product C', 'Product B'],
'Sales': [100, None, 150, 200, 120],
'Currency': ['USD', 'EUR', 'USD', 'GBP', 'EUR']
}
df = pd.DataFrame(data)
# Handle missing values (replace None with 0)
df['Sales'] = df['Sales'].fillna(0)
# Convert currency to USD (example rates)
currency_rates = {
'USD': 1.0,
'EUR': 1.1,
'GBP': 1.3
}
# Function to convert currency
def convert_to_usd(row):
return row['Sales'] / currency_rates[row['Currency']]
# Apply the conversion function
df['SalesUSD'] = df.apply(convert_to_usd, axis=1)
# Print the transformed data
print(df)
3. ããŒãïŒLoadïŒ
ããŒããã§ãŒãºã§ã¯ã倿ãããããŒã¿ãããŒã¿ãŠã§ã¢ããŠã¹ã«æžã蟌ã¿ãŸããããã«ã¯éåžžã以äžãå«ãŸããŸãã
- ããŒã¿ããŒã: ããŒã¿ãŠã§ã¢ããŠã¹ã®ããŒãã«ãžã®ããŒã¿ã®æ¿å ¥ãŸãã¯æŽæ°ã
- ããŒã¿æ€èšŒ: ããŒã¿ãæ£ããäžè²«ããŠããŒããããŠããããšã®ç¢ºèªã
- ã€ã³ããã¯ã¹äœæ: ã¯ãšãªããã©ãŒãã³ã¹ãæé©åããããã®ã€ã³ããã¯ã¹äœæã
äŸ: å°å£²äŒæ¥ãã倿ããã販売ããŒã¿ã¯ãããŒã¿ãŠã§ã¢ããŠã¹ã®è²©å£²ãã¡ã¯ãããŒãã«ã«ããŒããããŸããããã¯ãåä¿¡ããããŒã¿ã«åºã¥ããŠæ°ããã¬ã³ãŒããäœæããããæ¢åã®ã¬ã³ãŒããæŽæ°ãããããå ŽåããããŸããGDPRãCCPAãªã©ã®å€æ§ãªèŠå¶ãèæ ®ããããŒã¿ãæ£ããå°åããŒãã«ã«ããŒããããŠããããšã確èªããŠãã ããã
Pythonã¯ã以äžã®ãããªã©ã€ãã©ãªã䜿çšããŠæ§ã ãªããŒã¿ãŠã§ã¢ããŠã¹ã·ã¹ãã ãšå¯Ÿè©±ã§ããŸãã
psycopg2: PostgreSQLããŒã¿ãŠã§ã¢ããŠã¹ã«ããŒã¿ãããŒããããããsqlalchemy: çµ±äžãããã€ã³ã¿ãŒãã§ãŒã¹ã䜿çšããŠè€æ°ã®ããŒã¿ããŒã¹ã·ã¹ãã ãšå¯Ÿè©±ãããããboto3: Amazon Redshiftã®ãããªã¯ã©ãŠãããŒã¹ã®ããŒã¿ãŠã§ã¢ããŠã¹ãšå¯Ÿè©±ãããããgoogle-cloud-bigquery: Google BigQueryã«ããŒã¿ãããŒãããããã
ã³ãŒãäŸïŒpsycopg2ã䜿çšããPostgreSQLããŒã¿ãŠã§ã¢ããŠã¹ãžã®ããŒã¿ããŒãïŒ:
import psycopg2
# Database connection parameters
db_params = {
'host': 'localhost',
'database': 'datawarehouse',
'user': 'username',
'password': 'password'
}
# Sample data
data = [
(1, 'Product A', 100.0),
(2, 'Product B', 120.0),
(3, 'Product C', 150.0)
]
try:
# Connect to the database
conn = psycopg2.connect(**db_params)
cur = conn.cursor()
# SQL query to insert data
sql = """INSERT INTO sales (CustomerID, ProductName, Sales) VALUES (%s, %s, %s)"""
# Execute the query for each row of data
cur.executemany(sql, data)
# Commit the changes
conn.commit()
print('Data loaded successfully!')
except psycopg2.Error as e:
print(f'Error loading data: {e}')
finally:
# Close the connection
if conn:
cur.close()
conn.close()
ETLã®ããã®Pythonãã¬ãŒã ã¯ãŒã¯ãšããŒã«
Pythonã©ã€ãã©ãªã¯ETLã®æ§æèŠçŽ ãæäŸããŸãããããã€ãã®ãã¬ãŒã ã¯ãŒã¯ãšããŒã«ã¯ETLãã€ãã©ã€ã³ã®éçºãšãããã€ãç°¡çŽ åããŸãããããã®ããŒã«ã¯ãã¯ãŒã¯ãããŒç®¡çãã¹ã±ãžã¥ãŒãªã³ã°ãã¢ãã¿ãªã³ã°ããšã©ãŒåŠçãªã©ã®æ©èœãæäŸããŸãã
1. Apache Airflow
Apache Airflowã¯ãã¯ãŒã¯ãããŒãããã°ã©ã ã§ãªãŒãµãªã³ã°ãã¹ã±ãžã¥ãŒãªã³ã°ãç£èŠããããã®äººæ°ã®ãªãŒãã³ãœãŒã¹ãã©ãããã©ãŒã ã§ããAirflowã¯æåéå·¡åã°ã©ãïŒDAGïŒã䜿çšããŠã¯ãŒã¯ãããŒãå®çŸ©ããè€éãªETLãã€ãã©ã€ã³ã®ç®¡çã容æã«ããŸãã
äž»ãªæ©èœ:
- ã¯ãŒã¯ãããŒç®¡ç: DAGã䜿çšããŠè€éãªã¯ãŒã¯ãããŒãå®çŸ©ã
- ã¹ã±ãžã¥ãŒãªã³ã°: ç¹å®ã®ééãŸãã¯ã€ãã³ãã«åºã¥ããŠã¯ãŒã¯ãããŒãå®è¡ããããã«ã¹ã±ãžã¥ãŒã«ã
- ã¢ãã¿ãªã³ã°: ã¯ãŒã¯ãããŒãšã¿ã¹ã¯ã®ã¹ããŒã¿ã¹ãç£èŠã
- ã¹ã±ãŒã©ããªãã£: å€§èŠæš¡ãªã¯ãŒã¯ããŒããåŠçããããã«æ°Žå¹³æ¹åã«ã¹ã±ãŒãªã³ã°ã
- çµ±å: æ§ã ãªããŒã¿ãœãŒã¹ããã³å®å ãšçµ±åã
äŸ: Airflow DAGã¯ãå€åœç±äŒæ¥åãã®ETLããã»ã¹å šäœãèªååããããã«äœ¿çšã§ããŸããããã«ã¯ãè€æ°ã®ãœãŒã¹ããã®ããŒã¿æœåºãPandasã䜿çšããããŒã¿å€æãSnowflakeã®ãããªããŒã¿ãŠã§ã¢ããŠã¹ãžã®ããŒã¿ããŒããå«ãŸããŸãã
ã³ãŒãäŸïŒETLçšAirflow DAGïŒ:
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime
import pandas as pd
import requests
import psycopg2
# Define default arguments
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2023, 1, 1),
'retries': 1
}
# Define the DAG
dag = DAG('etl_pipeline', default_args=default_args, schedule_interval='@daily')
# Define the extract task
def extract_data():
# Extract data from API
url = 'https://api.example.com/sales'
response = requests.get(url)
data = response.json()
df = pd.DataFrame(data)
return df.to_json()
extract_task = PythonOperator(
task_id='extract_data',
python_callable=extract_data,
dag=dag
)
# Define the transform task
def transform_data(ti):
# Get the data from the extract task
data_json = ti.xcom_pull(task_ids='extract_data')
df = pd.read_json(data_json)
# Transform the data (example: calculate total sales)
df['TotalSales'] = df['Quantity'] * df['Price']
return df.to_json()
transform_task = PythonOperator(
task_id='transform_data',
python_callable=transform_data,
dag=dag
)
# Define the load task
def load_data(ti):
# Get the data from the transform task
data_json = ti.xcom_pull(task_ids='transform_data')
df = pd.read_json(data_json)
# Load data into PostgreSQL
db_params = {
'host': 'localhost',
'database': 'datawarehouse',
'user': 'username',
'password': 'password'
}
conn = psycopg2.connect(**db_params)
cur = conn.cursor()
for index, row in df.iterrows():
sql = """INSERT INTO sales (ProductID, Quantity, Price, TotalSales) VALUES (%s, %s, %s, %s)"""
cur.execute(sql, (row['ProductID'], row['Quantity'], row['Price'], row['TotalSales']))
conn.commit()
conn.close()
load_task = PythonOperator(
task_id='load_data',
python_callable=load_data,
dag=dag
)
# Define the task dependencies
extract_task >> transform_task >> load_task
2. Luigi
Luigiã¯ãããããžã§ãã®è€éãªãã€ãã©ã€ã³ãæ§ç¯ããã®ã«åœ¹ç«ã€ããã1ã€ã®ãªãŒãã³ãœãŒã¹Pythonããã±ãŒãžã§ããããã¯ãäŸåé¢ä¿ã®è§£æ±ºãã¯ãŒã¯ãããŒç®¡çãèŠèŠåããšã©ãŒåŠçãæ±ããŸãã
äž»ãªæ©èœ:
- ã¯ãŒã¯ãããŒå®çŸ©: Pythonã³ãŒãã䜿çšããŠã¯ãŒã¯ãããŒãå®çŸ©ã
- äŸåé¢ä¿ç®¡ç: ã¿ã¹ã¯éã®äŸåé¢ä¿ãèªåçã«ç®¡çã
- èŠèŠå: ãŠã§ãããŒã¹ã®ã€ã³ã¿ãŒãã§ãŒã¹ã§ã¯ãŒã¯ãããŒãèŠèŠåã
- ã¹ã±ãŒã©ããªãã£: å€§èŠæš¡ãªã¯ãŒã¯ããŒããåŠçããããã«æ°Žå¹³æ¹åã«ã¹ã±ãŒãªã³ã°ã
- ãšã©ãŒåŠç: ãšã©ãŒåŠçãšãªãã©ã€ã¡ã«ããºã ãæäŸã
äŸ: Luigiã¯ãããŒã¿ããŒã¹ããããŒã¿ãæœåºããPandasã䜿çšããŠå€æããããŒã¿ãŠã§ã¢ããŠã¹ã«ããŒãããããŒã¿ãã€ãã©ã€ã³ãæ§ç¯ããããã«äœ¿çšã§ããŸãããã€ãã©ã€ã³ã¯ãŠã§ãã€ã³ã¿ãŒãã§ãŒã¹ã§èŠèŠåãããåã¿ã¹ã¯ã®é²æç¶æ³ã远跡ã§ããŸãã
3. Scrapy
Scrapyã¯ããŠã§ãã¹ã¯ã¬ã€ãã³ã°ã®ããã®åŒ·åãªPythonãã¬ãŒã ã¯ãŒã¯ã§ããäž»ã«ãŠã§ããµã€ãããããŒã¿ãæœåºããããã«äœ¿çšãããŸããããŠã§ãããŒã¹ã®ãœãŒã¹ããããŒã¿ãæœåºããããã®ETLãã€ãã©ã€ã³ã®äžéšãšããŠäœ¿çšããããšãã§ããŸãã
äž»ãªæ©èœ:
- ãŠã§ãã¹ã¯ã¬ã€ãã³ã°: CSSã»ã¬ã¯ã¿ãŸãã¯XPathåŒã䜿çšããŠãŠã§ããµã€ãããããŒã¿ãæœåºã
- ããŒã¿åŠç: æœåºãããããŒã¿ãåŠçããã¯ãªãŒã³ã¢ããã
- ããŒã¿ãšã¯ã¹ããŒã: ããŒã¿ãæ§ã ãªåœ¢åŒïŒäŸ: CSVãJSONïŒã§ãšã¯ã¹ããŒãã
- ã¹ã±ãŒã©ããªãã£: å€§èŠæš¡ãªãŠã§ããµã€ããã¹ã¯ã¬ã€ãã³ã°ããããã«æ°Žå¹³æ¹åã«ã¹ã±ãŒãªã³ã°ã
äŸ: Scrapyã¯ãEã³ããŒã¹ãŠã§ããµã€ãããã®è£œåæ å ±ããœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã ããã®é¡§å®¢ã¬ãã¥ãŒããã¥ãŒã¹ãŠã§ããµã€ãããã®è²¡åããŒã¿ãæœåºããããã«äœ¿çšã§ããŸãããã®ããŒã¿ã¯ãåæã®ããã«ããŒã¿ãŠã§ã¢ããŠã¹ã«å€æããã³ããŒããããŸãã
PythonããŒã¹ETLã®ãã¹ããã©ã¯ãã£ã¹
å ç¢ã§ã¹ã±ãŒã©ãã«ãªETLãã€ãã©ã€ã³ãæ§ç¯ããã«ã¯ãæ éãªèšç»ãšãã¹ããã©ã¯ãã£ã¹ã®é å®ãå¿ èŠã§ãã以äžã«ããã€ãã®éèŠãªèæ ®äºé ã瀺ããŸãã
1. ããŒã¿å質
ETLããã»ã¹å šäœã§ããŒã¿å質ã確ä¿ããŸããåæ®µéã§ããŒã¿æ€èšŒãã§ãã¯ãå®è£ ãããšã©ãŒãç¹å®ããŠä¿®æ£ããŸããããŒã¿ãããã¡ã€ãªã³ã°ããŒã«ã䜿çšããŠãããŒã¿ã®ç¹æ§ãçè§£ããæœåšçãªåé¡ãç¹å®ããŸãã
2. ã¹ã±ãŒã©ããªãã£ãšããã©ãŒãã³ã¹
倧éã®ããŒã¿ãåŠçããå¿ èŠã«å¿ããŠã¹ã±ãŒãªã³ã°ã§ããããETLãã€ãã©ã€ã³ãèšèšããŸããããŒã¿ããŒãã£ã·ã§ãã³ã°ã䞊ååŠçããã£ãã·ã³ã°ãªã©ã®æè¡ã䜿çšããŠããã©ãŒãã³ã¹ãæé©åããŸããèªåã¹ã±ãŒãªã³ã°ãšããã©ãŒãã³ã¹æé©åãæäŸããã¯ã©ãŠãããŒã¹ã®ããŒã¿ãŠã§ã¢ããŠã¹ãœãªã¥ãŒã·ã§ã³ã®äœ¿çšãæ€èšããŠãã ããã
3. ãšã©ãŒåŠçãšç£èŠ
ãšã©ãŒãææããŠãã°ã«èšé²ããããã®å ç¢ãªãšã©ãŒåŠçã¡ã«ããºã ãå®è£ ããŸããç£èŠããŒã«ã䜿çšããŠETLãã€ãã©ã€ã³ã®ããã©ãŒãã³ã¹ã远跡ããæœåšçãªããã«ããã¯ãç¹å®ããŸãã管çè ã«é倧ãªãšã©ãŒãéç¥ããããã®ã¢ã©ãŒããèšå®ããŸãã
4. ã»ãã¥ãªãã£
æ©å¯ããŒã¿ãä¿è·ããããã«ETLãã€ãã©ã€ã³ãä¿è·ããŸãã転éäžããã³ä¿åäžã®ããŒã¿ãä¿è·ããããã«æå·åã䜿çšããŸããæ©å¯ããŒã¿ããã³ãªãœãŒã¹ãžã®ã¢ã¯ã»ã¹ãå¶éããããã«ã¢ã¯ã»ã¹å¶åŸ¡ãå®è£ ããŸããé¢é£ããããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒäŸ: GDPRãCCPAïŒãéµå®ããŸãã
5. ããŒãžã§ã³ç®¡ç
ããŒãžã§ã³ç®¡çã·ã¹ãã ïŒäŸ: GitïŒã䜿çšããŠãETLã³ãŒããšæ§æã«å¯Ÿãã倿Žã远跡ããŸããããã«ãããå¿ èŠã«å¿ããŠä»¥åã®ããŒãžã§ã³ã«ç°¡åã«æ»ãããšãã§ããä»ã®éçºè ãšå ±åäœæ¥ãè¡ãããšãã§ããŸãã
6. ããã¥ã¡ã³ããŒã·ã§ã³
ããŒã¿ãœãŒã¹ã倿ãããŒã¿ãŠã§ã¢ããŠã¹ã¹ããŒããå«ãETLãã€ãã©ã€ã³ã培åºçã«ææžåããŸããããã«ããããã€ãã©ã€ã³ã®çè§£ãä¿å®ããã©ãã«ã·ã¥ãŒãã£ã³ã°ã容æã«ãªããŸãã
7. ã€ã³ã¯ãªã¡ã³ã¿ã«ããŒã
æ¯åããŒã¿ã»ããå šäœãããŒããã代ããã«ãååã®ããŒã以éã®å€æŽã®ã¿ãããŒãããã€ã³ã¯ãªã¡ã³ã¿ã«ããŒããå®è£ ããŸããããã«ããããœãŒã¹ã·ã¹ãã ãžã®è² è·ã軜æžãããETLãã€ãã©ã€ã³ã®ããã©ãŒãã³ã¹ãåäžããŸããããã¯ããªãããŒã¯æã«ããããªå€æŽãããªãå¯èœæ§ã®ããã°ããŒãã«åæ£ã·ã¹ãã ã«ãšã£ãŠç¹ã«éèŠã§ãã
8. ããŒã¿ã¬ããã³ã¹
ããŒã¿å質ãäžè²«æ§ãã»ãã¥ãªãã£ã確ä¿ããããã®ããŒã¿ã¬ããã³ã¹ããªã·ãŒã確ç«ããŸããããŒã¿æææš©ãããŒã¿ãªããŒãžãããŒã¿ä¿æããªã·ãŒãå®çŸ©ããŸããããŒã¿å質ãç£èŠããæéã®çµéãšãšãã«ããŒã¿åè³ªãæ¹åããããã®ããŒã¿å質ãã§ãã¯ãå®è£ ããŸãã
ã±ãŒã¹ã¹ã¿ãã£
1. å€åœç±å°å£²äŒæ¥
ããå€åœç±å°å£²äŒæ¥ã¯ãPythonãšApache Airflowã䜿çšããŠãè€æ°ã®å°åããã®è²©å£²ããŒã¿ãçµ±åããããŒã¿ãŠã§ã¢ããŠã¹ãæ§ç¯ããŸãããETLãã€ãã©ã€ã³ã¯ãæ§ã ãªããŒã¿ããŒã¹ããããŒã¿ãæœåºããå ±éã®åœ¢åŒã«å€æããã¯ã©ãŠãããŒã¹ã®ããŒã¿ãŠã§ã¢ããŠã¹ã«ããŒãããŸããããã®ããŒã¿ãŠã§ã¢ããŠã¹ã«ãããå瀟ã¯è²©å£²ãã¬ã³ããåæããäŸ¡æ ŒæŠç¥ãæé©åããã°ããŒãã«ãªåšåº«ç®¡çãæ¹åããããšãã§ããŸããã
2. ã°ããŒãã«éèæ©é¢
ããã°ããŒãã«éèæ©é¢ã¯ãPythonãšLuigiã䜿çšããŠããã©ã³ã¶ã¯ã·ã§ã³ããŒã¿ããŒã¹ãåžå ŽããŒã¿ãã£ãŒããèŠå¶åœå±ãžã®æåºæžé¡ãªã©ãè€æ°ã®ãœãŒã¹ããããŒã¿ãæœåºããããŒã¿ãã€ãã©ã€ã³ãæ§ç¯ããŸããããã®ããŒã¿ãã€ãã©ã€ã³ã¯ãããŒã¿ãäžè²«æ§ã®ãã圢åŒã«å€æããããŒã¿ãŠã§ã¢ããŠã¹ã«ããŒãããŸãããããŒã¿ãŠã§ã¢ããŠã¹ã«ããããã®æ©é¢ã¯è²¡åããã©ãŒãã³ã¹ãç£èŠããè©æ¬ºãæ€åºããèŠå¶èŠä»¶ãéµå®ããããšãã§ããŸããã
3. Eã³ããŒã¹ãã©ãããã©ãŒã
ããEã³ããŒã¹ãã©ãããã©ãŒã ã¯ãPythonãšScrapyã䜿çšããŠãæ§ã ãªãŠã§ããµã€ãããè£œåæ å ±ãšé¡§å®¢ã¬ãã¥ãŒãæœåºããŸãããæœåºãããããŒã¿ã¯å€æããããŒã¿ãŠã§ã¢ããŠã¹ã«ããŒããããé¡§å®¢ææ ã®åæããã¬ã³ã補åã®ç¹å®ã補åã¬ã³ã¡ã³ããŒã·ã§ã³ã®æ¹åã«å©çšãããŸããããã®ã¢ãããŒãã«ããã圌ãã¯æ£ç¢ºãªè£œåäŸ¡æ ŒããŒã¿ãç¶æããäžæ£ãªã¬ãã¥ãŒãç¹å®ããããšãã§ããŸããã
çµè«
Pythonã¯ãETLãåããããŒã¿ãŠã§ã¢ããŠã¹ãæ§ç¯ããããã®åŒ·åã§æ±çšæ§ã®é«ãèšèªã§ãããã®åºç¯ãªã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯ã®ãšã³ã·ã¹ãã ã«ãããæ§ã ãªãœãŒã¹ããããŒã¿ãç°¡åã«æœåºã倿ãããŒãã§ããŸããããŒã¿å質ãã¹ã±ãŒã©ããªãã£ãã»ãã¥ãªãã£ãã¬ããã³ã¹ã«é¢ãããã¹ããã©ã¯ãã£ã¹ã«åŸãããšã§ãçµç¹ã¯ããŒã¿ãã貎éãªæŽå¯ãæäŸããå ç¢ã§ã¹ã±ãŒã©ãã«ãªETLãã€ãã©ã€ã³ãæ§ç¯ã§ããŸããApache AirflowãLuigiãªã©ã®ããŒã«ã䜿çšãããšãè€éãªã¯ãŒã¯ãããŒããªãŒã±ã¹ãã¬ãŒã·ã§ã³ããETLããã»ã¹å šäœãèªååã§ããŸããããžãã¹ã€ã³ããªãžã§ã³ã¹ã®ããŒãºã«Pythonãåãå ¥ããããŒã¿ã®å¯èœæ§ãæå€§éã«åŒãåºããŸãããïŒ
次ã®ã¹ããããšããŠãããŒã¿ããŒã«ãã¢ããªã³ã°ããã£ããå€åãããã£ã¡ã³ã·ã§ã³ããªã¢ã«ã¿ã€ã ããŒã¿ã€ã³ãžã§ã¹ããªã©ã®é«åºŠãªããŒã¿ãŠã§ã¢ããŠãžã³ã°æè¡ãæ¢æ±ããããšãæ€èšããŠãã ãããããã«ãPythonããŒã¿ãšã³ãžãã¢ãªã³ã°ãšã¯ã©ãŠãããŒã¹ã®ããŒã¿ãŠã§ã¢ããŠãžã³ã°ãœãªã¥ãŒã·ã§ã³ã®ææ°éçºã«ã€ããŠåžžã«æ å ±ãå ¥æããããŒã¿ãŠã§ã¢ããŠã¹ã€ã³ãã©ã¹ãã©ã¯ãã£ãç¶ç¶çã«æ¹åããŠãã ãããããŒã¿ãšã¯ã»ã¬ã³ã¹ãžã®ãã®ã³ãããã¡ã³ãã¯ãããè¯ãããžãã¹äžã®æææ±ºå®ãšãã匷åãªã°ããŒãã«ãã¬ãŒã³ã¹ãæšé²ããã§ãããã